DC Control in a Relay

A Leader in Clean Energy with Compact, Quiet, Energy-efficient Designs

(D) C (O) B R R (L) Y

DC Power Relays that Interrupt High-capacity DC Loads and High-voltage DC Circuits

 in a Compact, Low-noise DesignIn the endeavors to prevent global warming, air pollution, and the depletion of oil resources, much attention is being given to increasing the efficiency of AC-to-DC power conversion and distributed power generation. DC contactors and circuitbreakers, however, are disadvantaged by their noise and bulk.
OMRON has improved on the standard DC circuit that switches using a contactor or circuit-breaker by developing the G9EA/G9EC DC Power Relay Series. These Relays enable switching high-voltage and high-capacity loads. The switch's gas-filled construction allows a considerable reduction in the relay switch size, while also lowering the operating noise during load switching. Furthermore, the new design has decreased the power consumption of the coil and achieved long-term contact stability.

Ceatires

OMRON DC Power Switching Technologies
Sealed switching
Gas-cooled arc
Magnetic arc control

> Space-saving No arc space needed

Quiet 50% lower operating noise

Compact 70% less volume

Power-saving 30% less power consumption

DC Power Relays

Selection Guide

OMRON DC Power Relays Interrupt High-capacity DC Loads while Enabling Compact, Low-noise, Safe Applications

List of DC Power Relays

Model		G9EA		G9EC	G9EB (See note 1.)
		G9EA-1(-B)	G9EA-1(-B)-CA	G9EC-1(-B)	G9EB-1-B
Classification		Switching/current conduction	High-current conduction	Switching/current conduction	Switching/current conduction
Appearance					
Features		Standard model Compact, carries switches $400-\mathrm{V}, 60-\mathrm{A}$ loads	Carries 100 A Low contact resistance when carrying current	Largest capacity in series Carries/switches 400-V, 200-A loads	Smallest in series Carries/switches 250-V, 25-A loads
Contacts	Contact form	SPST-NO			
	Contact structure	Double-break, single			
	Contact resistance	$30 \mathrm{~m} \Omega$ max. $(0.6 \mathrm{~m} \Omega$ typical) $10 \mathrm{~m} \Omega$ max. $(0.3 \mathrm{~m} \Omega$ typical $)$ $0.1 \mathrm{Vmax}$.		$30 \mathrm{~m} \Omega$ max. (0.2 m Ω typical)	$30 \mathrm{~m} \Omega$ max.
	Switching voltage drop	0.1 V max. (for a carry current of 60 A)	0.1 V max. (for a carry current of 100 A)	$0.1 \mathrm{~V} \mathrm{max}$. (for a carry current of 200 A)	0.5 V max. (for a carry current of 25 A)
	Electrical endurance	$\begin{aligned} & 120 \text { VDC, } 100 \mathrm{~A}, 3,000 \\ & \text { operations min. } \end{aligned}$	400 VDC, 30 A, 1,000 operations min.	$\begin{aligned} & 400 \text { VDC, } 200 \mathrm{~A}, 3,000 \\ & \text { operations min. } \end{aligned}$	$\begin{aligned} & 250 \text { VDC, } 25 \mathrm{~A}, 30,000 \\ & \text { operations min. } \\ & \hline \end{aligned}$
		$400 \mathrm{VDC}, 60 \mathrm{~A}, 3,000$ operations min.	$120 \text { VDC, } 30 \mathrm{~A}, 2,500$ operations min.	---	---
		400 VDC, 30 A, 30,000 operations min.	---	---	---
	Maximum switching current	100 A	30 A	200 A	25 A
	Rated carry 200 current 180 160 140 120 100 80 60 40 20 	60A	100 A		25 A
	Short-time carry current	100 A (10 min)	150 A (10 min)	300 A (15 min)	$50 \mathrm{~A}(5 \mathrm{~min}), 40 \mathrm{~A}(15 \mathrm{~min})$
	Maximum interruption current	600 A at 300 VDC (5 times)	---	$\begin{array}{\|l} 1,000 \mathrm{~A} \text { at } 400 \mathrm{VDC} \\ \text { (10 times) } \end{array}$	$\begin{aligned} & 100 \mathrm{~A} \text { at } 250 \mathrm{VDC} \\ & \text { (5 times) } \end{aligned}$
	Overload interruption	180 A at 400 VDC $(100$ times min.)	100 A at 120 VDC (150 times min.)	700 A at 400 VDC (40 times min.)	50 A at 250 VDC (50 times min.)
	Reverse polarity interruption	$\begin{aligned} & -60 \mathrm{~A} \text { at } 200 \mathrm{VDC} \\ & (1,000 \text { times min. }) \end{aligned}$	---	$\begin{aligned} & -200 \mathrm{~A} \text { at } 200 \text { VDC } \\ & (1,000 \text { times min. }) \end{aligned}$	---
Coil	Rated voltage	12, 24, 48, 60, and 100 VDC			
	Power consumption	Approx. 5 to 5.4 W		Approx. 11 W	Approx. 2 W
Mechanical endurance		200,000 operations min.			100,000 operations min.

Model		G9EA		G9EC	G9EB (See note 1.)
		G9EA-1(-B)	G9EA-1(-B)-CA	G9EC-1(-B)	G9EB-1-B
Classification		Switching/current conduction	High-current conduction	Switching/current conduction	Switching/current conduction
Appearance		67.2			
Features		Standard model Compact, carries/ switches 400-V, 60-A loads	Carries 100 A Low contact resistance when carrying current	Largest capacity in series Carries/switches 400-V, 200-A loads	\quad Smallest in series Carries/switches 250-V, 25-A loads
Insulation resistance (See note 2.)	Between coil and contacts	1,000 M			
	Between contacts of the same polarity	1,000 M $\Omega \mathrm{min}$.			
Dielectric strength	Between coil and contacts	2,500 VAC, 1 min			
	Between contacts of the same polarity	2,500 VAC, 1 min			
Impulse withstand voltage (See note 3.)		4,500 V			
Ambient operating temperature		-40 to $70^{\circ} \mathrm{C}$ (with no icing or condensation)		-40 to $50^{\circ} \mathrm{C}$ (with no icing or condensation)	-40 to $70^{\circ} \mathrm{C}$ (with no icing or condensation)
Ambient operating humidity		5\% to 85\%			
Terminals	Screw terminals	Yes		Yes	Yes
	Lead wire output	Yes		Yes	---
Weight		Approx. 310 g		Approx. 570 g	Approx. 100 g
Refer to page		5		11	17

Note: 1. This product is under development. Provisional specifications for the product are provided in this document. The actual specifications at the time of sales release are subject to change without notice.
2. The insulation resistance was measured with a 500-VDC megohmmeter.
3. The impulse withstand voltage was measured with a JEC-212 (1981) standard impulse voltage waveform ($1.2 \times 50 \mu \mathrm{~s})$.

DC Power Relays (60-A, 100-A Models) G9EA-1

DC Power Relays Capable of Interrupting High-voltage, High-current Loads

- A compact relay ($73 \times 36 \times 67.2 \mathrm{~mm}(\mathrm{~L} \times \mathrm{W} \times \mathrm{H})$) capable of switching $400-\mathrm{V} 60-\mathrm{A} / 100-\mathrm{A}$ DC loads. (Capable of interrupting 600 A at 300 VDC max.)
- The switching section and driving section are gas-injected and hermetically sealed, allowing these compact relays to interrupt high-capacity loads. The sealed construction also requires no arc space, saves space, and helps ensure safe applications.
- Downsizing and optimum design allow no restrictions on the mounting direction.
- Terminal Cover and DIN Track Adapters are also available for industrial applications.
- UL/CSA approval pending.

Note: Refer to Precautions on page 20.

Model Number Structure

Model Number Legend

1. Number of Poles

1: 1 pole
2. Contact Form

Blank: SPST-NO
3. Coil Terminals

B: M3.5 screw terminals
Blank: Lead wire output
4. Special Functions

CA: High-current conduction (100 A)
Note: Power-saving Models (with auxiliary contacts function) are scheduled to be added to the lineup as special function models.

Ordering Information

List of Models

Models	Terminals		Contact form	Rated coil voltage	Model
	Coil terminals	Contact terminals			
Switching/current conduction models	Screw terminals	Screw terminals	SPST-NO	$\begin{aligned} & \hline 12 \text { VDC } \\ & 24 \text { VDC } \\ & 48 \text { VDC } \\ & 60 \text { VDC } \\ & 100 \text { VDC } \end{aligned}$	G9EA-1-B
	Lead wires				G9EA-1
High-current conduction models	Screw terminals				G9EA-1-B-CA
	Lead wires				G9EA-1-CA

Note: 1. Relays come with two M5 screws for the main terminals (contacts).
2. Relays with coil terminals and screw terminals come with two M3.5 screws.

Specifications

Ratings

Coil

Rated voltage	Rated current	Coil resistance	Must-operate voltage	Must-release voltage	$\substack{\text { Maximum voltage } \\ \text { (See note 3.) }}$	Power consumption
12 VDC	417 mA	28.8Ω	75\% max. of rated voltage	8% min. of rated voltage	130% of rated voltage	Approx. 5 W
24 VDC	208 mA	115.2Ω				
48 VDC	102 mA	469.3Ω				
60 VDC	86.2 mA	695.7Ω				Approx. 5.2 W
100 VDC	53.6 mA	1,864 Ω				Approx. 5.4 W

Note: 1. The figures for the rated current and coil resistance are for a coil temperature of $23^{\circ} \mathrm{C}$ and have a tolerance of $\pm 10 \%$.
2. The figures for the operating characteristics are for a coil temperature of $23^{\circ} \mathrm{C}$.
3. The figure for the maximum voltage is the maximum voltage that can be applied to the relay coil for period of 10 minutes at an ambient temperature of $23^{\circ} \mathrm{C}$. It does not apply to continuous operation.

Contacts

Item	Resistive load	
	G9EA-1(-B)	G9EA-1(-B)-CA
Rated load	60 A at 400 VDC, 100 A at 120 VDC	30 A at 400 VDC
Rated carry current	60 A	100 A
Maximum switching voltage	400 V	400 V
Maximum switching current	100 A	30 A

■ Characteristics

Item		G9EA-1(-B)	G9EA-1(-B)-CA
Contact resistance (See note 2.)		$30 \mathrm{~m} \Omega$ max. ($0.6 \mathrm{~m} \Omega$ typical)	$10 \mathrm{~m} \Omega$ max. ($0.3 \mathrm{~m} \Omega$ typical)
Contact voltage drop		0.1 V max. (for a carry current of 60 A)	0.1 V max. (for a carry current of 100 A)
Operate time		50 ms max .	
Release time		30 ms max .	
Insulation resistance (See note 3.)	Between coil and contacts	1,000 M 2 min.	
	Between contacts of the same polarity	1,000 M Ω min.	
Dielectric strength	Between coil and contacts	$2,500 \mathrm{VAC}, 1 \mathrm{~min}$	
	Between contacts of the same polarity	2,500 VAC, 1 min	
Impulse withstand voltage (See note 4.)		$4,500 \mathrm{~V}$	
Vibration resistance	Destruction	10 to 55 to $10 \mathrm{~Hz}, 0.75-\mathrm{mm}$ single amplitude (Acceleration: 2.94 to $88.9 \mathrm{~m} / \mathrm{s}^{2}$)	
	Malfunction	10 to 55 to $10 \mathrm{~Hz}, 0.75-\mathrm{mm}$ single amplitude (Acceleration: 2.94 to $88.9 \mathrm{~m} / \mathrm{s}^{2}$)	
Shock resistance	Destruction	$490 \mathrm{~m} / \mathrm{s}^{2}$	
	Malfunction	$196 \mathrm{~m} / \mathrm{s}^{2}$	
Mechanical endurance (See note 5.)		200,000 ops. min.	
Electrical endurance (See note 6.)		120 VDC, $100 \mathrm{~A}, 3,000$ ops. min.	400 VDC, 30 A, 1,000 ops. min.
		400 VDC, 60 A, 3,000 ops. min.	120 VDC, 30 A, 2,500 ops. min.
		400 VDC, 30 A, 30,000 ops. min.	---
Short-time carry current		100 A (10 min)	150 A (10 min)
Maximum interruption current		600 A at 300 VDC (5 times)	---
Overload interruption		180 A at 400 VDC (100 times min.)	100 A at 120 VDC (150 times min.)
Reverse polarity interruption		-60 A at 200 VDC (1,000 times min.)	---
Ambient operating temperature		-40 to $70^{\circ} \mathrm{C}$ (with no icing or condensation)	
Ambient operating humidity		5\% to 85\%	
Weight		Approx. 310 g	

Note: 1. The above values are initial values at an ambient temperature of $23^{\circ} \mathrm{C}$ unless otherwise specified.
2. The contact resistance was measured with 1 A at 5 VDC using the voltage drop method.
3. The insulation resistance was measured with a 500 -VDC megohmmeter.
4. The impulse withstand voltage was measured with a JEC-212 (1981) standard impulse voltage waveform ($1.2 \times 50 \mu \mathrm{~s}$)
5. The mechanical endurance was measured at a switching frequency of 3,600 operations $/ \mathrm{hr}$.
6. The electrical endurance was measured at a switching frequency of 60 operations $/ \mathrm{hr}$.

omROn

Engineering Data

■ G9EA-1(-B) Switching/Current Conduction Models

■ G9EA-1(-B)-CA High-current Conduction Models

Must-operate Voltage and
Must-release Voltage
Distributions

Vibration Resistance

Characteristics were measured after applying vibration at a frequency of 10 to 55 Hz (single amplitude of 0.75 mm) to the test piece (not energized) for 2 hours each in 3 directions. The percentage rate of change is the average value for all of the samples

Time Characteristic Distributions

Shock Malfunction

The value at which malfunction occurred was measured after applying shock to the test piece 3 times each in 6 directions along 3 axes

Vibration Malfunction

Shock Resistance

Characteristics were measured after applying a shock of $490 \mathrm{~m}^{2} / \mathrm{s}$ to the test piece 3 times each in 6 directions along 3 axes. The percentage rate of change is the average value for all of the samples.

Dimensions

Note: All units are in millimeters unless otherwise indicated.

Models with Screw Terminals

G9EA-1-B(-CA)

Models with Lead Wires

G9EA-1(-CA)

Terminal Arrangement/
Internal Connections
Internal Connectio
(TOP VIEW)

Note: Be sure to connect terminals with the correct polarity. Coils do not have polarity.
Mounting Hole Dimensions
(TOP VIEW)

Dimension (mm)	Tolerance (mm)
10 or lower	± 0.3
10 to 50	± 0.5
50 or higher	± 1

Options (Available Soon)

Terminal Cover

pgea-C

Dimension (mm)	Tolerance (mm)
10 or lower	± 0.3
10 to 50	± 0.5
50 or higher	± 1

DIN Track Adapter

P9EA-D

Dimension (mm)	Tolerance $(\mathbf{m m})$
10 or lower	± 0.3
10 to 50	± 0.5
50 or higher	± 1

DC Power Relays (200-A Models)

G9EC-1

DC Power Relays Capable of Interrupting High-voltage, High-current Loads

- A compact relay ($98 \times 44 \times 86.7 \mathrm{~mm}(\mathrm{~L} \times \mathrm{W} \times \mathrm{H})$) capable of switching 400-V 200-A DC loads. (Capable of interrupting 1,000 A at 400 VDC max.)
- The switching section and driving section are gas-injected and hermetically sealed, allowing these compact relays to interrupt high-capacity loads. The sealed construction also requires no arc space, saves space, and helps ensure safe applications.
- Downsizing and optimum design allow no restrictions on the mounting direction.
- Terminal Cover is also available for industrial applications.

- UL/CSA approval pending.

Note: Refer to "Precautions" on page 20.

Model Number Structure

Model Number Legend

G9EC- $\frac{\square}{1}-\frac{\square}{2}-\frac{\square}{3}-\frac{\square}{4}$

1. Number of Poles

1: 1 pole
2. Contact Form

Blank: SPST-NO
3. Coil Terminals

B: M3.5 screw terminals (standard)
Blank: Lead wire output
4. Special Functions

Note: Power-saving Models (with auxiliary contacts function) are scheduled to be added to the lineup as special function models.

Ordering Information

List of Models

Models	Terminals		Contact form	Coil rated voltage	Model
	Coil terminals	Contact terminals			
Switching/current conduction models	Screw terminals	Screw terminals	SPST-NO	$\begin{aligned} & \hline 12 \text { VDC } \\ & 24 \text { VDC } \\ & 48 \text { VDC } \\ & 60 \text { VDC } \\ & 100 \text { VDC } \end{aligned}$	G9EC-1-B
	Lead wire				G9EC-1

Note: 1. Relays come with two M8 nuts for the main terminals (contacts).
2. Relays with coil terminals and screw terminals come with two M3.5 screws.

Specifications

Ratings

Coil

Rated voltage	Rated current	Coil resistance	Must-operate voltage	Must-release voltage	Maximum voltage (See note 3.)	Power consumption
12 VDC	938 mA	12.8 ת	75% max. of rated voltage	8% min. of rated voltage	110\% of rated voltage	Approx. 11 W
24 VDC	469 mA	51.2Ω				
48 VDC	234 mA	204.8 ת				
60 VDC	188 mA	320.0Ω				
100 VDC	113 mA	888.9 ת				

Note: 1. The figures for the rated current and coil resistance are for a coil temperature of $23^{\circ} \mathrm{C}$ and have a tolerance of $\pm 10 \%$.
2. The figures for the operating characteristics are for a coil temperature of $23^{\circ} \mathrm{C}$.
3. The figure for the maximum voltage is the maximum voltage that can be applied to the relay coil for period of 10 minutes at an ambient temperature of $23^{\circ} \mathrm{C}$. It does not apply to continuous operation.

Contacts

Item	Resistive Ioad
	G9EC-1(-B)
Rated load	200 A at 400 VDC
Rated carry current	200 A
Maximum switching voltage	400 V
Maximum switching current	200 A

Characteristics

Item		G9EC-1(-B)
Contact resistance (See note 2.)		$30 \mathrm{~m} \Omega$ max. (0.2 m Ω typical)
Contact voltage drop		0.1 V max. (for a carry current of 200 A)
Operate time		50 ms max.
Release time		30 ms max.
Insulation resistance (See note 3.)	Between coil and contacts	1,000 M 2 min.
	Between contacts of the same polarity	1,000 M Ω min.
Dielectric strength	Between coil and contacts	2,500 VAC, 1 min
	Between contacts of the same polarity	2,500 VAC, 1 min
Impulse withstand voltage (See note 4.)		4,500 V
Vibration resistance	Destruction	10 to 55 to $10 \mathrm{~Hz} 0.75-\mathrm{mm}$ single amplitude (Acceleration: 2.94 to $88.9 \mathrm{~m} / \mathrm{s}^{2}$)
	Malfunction	10 to 55 to $10 \mathrm{~Hz} 0.75-\mathrm{mm}$ single amplitude (Acceleration: 2.94 to $88.9 \mathrm{~m} / \mathrm{s}^{2}$)
Shock resistance	Destruction	490 m/s ${ }^{2}$
	Malfunction	$196 \mathrm{~m} / \mathrm{s}^{2}$
Mechanical endurance (See note 5.)		200,000 operations min.
Electrical endurance (resistive load) (See note 6.)		400 VDC, 200 A, 3,000 operations min.
Short-time carry current		$300 \mathrm{~A}(15 \mathrm{~min})$
Maximum interruption current		1,000 A at 400 VDC (10 times)
Overload interruption		700 A at 400 VDC (40 times min.)
Reverse polarity interruption		-200 A at 200 VDC (1,000 times min.)
Ambient operating temperature		-40 to $50^{\circ} \mathrm{C}$ (with no icing or condensation)
Ambient operating humidity		5\% to 85\%
Weight		Approx. 570 g

Note: 1. The above values are initial values at an ambient temperature of $23^{\circ} \mathrm{C}$ unless otherwise specified.
2. The contact resistance was measured with 1 A at 5 VDC using the voltage drop method.
3. The insulation resistance was measured with a 500-VDC megohmmeter.
4. The impulse withstand voltage was measured with a JEC-212 (1981) standard impulse voltage waveform ($1.2 \times 50 \mu \mathrm{~s}$).
5. The mechanical endurance was measured at a switching frequency of 3,600 operations $/ \mathrm{hr}$.
6. The electrical endurance was measured at a switching frequency of 60 operations $/ \mathrm{hr}$.

Engineering Data

-G9EC-1(-B) Switching/Current Conduction Models

Carry Current vs Energizing Time

Electrical Endurance
(Switching Performance)

Must-operate Voltage and Must-release Voltage Distributions

Electrical Endurance (Interruption Performance)

Time Characteristic Distributions

Dimensions

Note: All units are in millimeters unless otherwise indicated.

Models with Screw Terminals

G9EC-1-B

Terminal Arrangement/

Note: Be sure to connect terminals with the correct polarity. Coils do not have polarity.

Mounting Hole Dimensions

(TOP VIEW)

Models with Lead Wires

G9EC-1

Terminal Arrangement/

Note: Be sure to connect terminals with the correct polarity. Coils do not have polarity. Mounting Hole Dimensions (TOP VIEW)

Two, M6 or 6.5-dia. holes

Options (Available Soon)
Terminal Cover
P9EC-C

DC Power Relays (25-A Models)

G9EB-1

- This product is under development. Provisional specifications for the product are provided in this document. The actual specifications at the time of sales release are subject to change without notice.

Note: Refer to "Precautions" on page 20.

Model Number Structure

Model Number Legend

G9EB $-\square-\square-\frac{\square}{1} \frac{\square}{3} \frac{\square}{4}$

1. Number of Poles
2. Special Functions

1: 1 pole
2. Contact Form

Blank: SPST-NO
3. Coil Terminals

B: M3.5 screw terminals

Ordering Information

List of Models

Models	Terminals		Contact form	Coil rated voltage	Model
	Coil terminals	Contact terminals			
Switching/current conduction models	Screw terminals	Screw terminals	SPST-NO	$\begin{aligned} & \hline 12 \text { VDC } \\ & 24 \text { VDC } \\ & 48 \text { VDC } \\ & 60 \text { VDC } \\ & 100 \text { VDC } \end{aligned}$	G9EB-1-B

Note: 1. Relays come with two M4 screws for the main terminals (contacts).
2. Relays with coil terminals and screw terminals come with two M3.5 screws.

Specifications

Ratings

Coil

Rated voltage	Rated current	Coil resistance	Must-operate voltage	Must-release voltage	Maximum voltage (See note 3.)	Power consumption
12 VDC	166.7 mA	72Ω	75% max. of rated voltage	10% min. of rated voltage	130% of rated voltage	Approx. 2 W
24 VDC	83.3 mA	288Ω				
48 VDC	41.7 mA	1,152 Ω				
60 VDC	33.3 mA	1,800 Ω				
100 VDC	20 mA	5,000 Ω				

Note: 1. The figures for the rated current and coil resistance are for a coil temperature of $23^{\circ} \mathrm{C}$ and have a tolerance of $\pm 10 \%$.
2. The figures for the operating characteristics are for a coil temperature of $23^{\circ} \mathrm{C}$.
3. The figure for the maximum voltage is the maximum voltage that can be applied to the relay coil for period of 10 minutes at an ambient temperature of $23^{\circ} \mathrm{C}$. It does not apply to continuous operation.

Contacts

Item	Resistive Ioad
	G9EB-1(-B)
Rated load	25 A at 250 VDC
Rated carry current	25 A
Maximum switching voltage	250 V
Maximum switching current	25 A

Characteristics

Item		G9EB-1-B
Contact resistance (See note 2.)		$30 \mathrm{~m} \Omega$ max.
Contact voltage drop		0.5 V max. (for a carry current of 25 A)
Operate time		50 ms max .
Release time		30 ms max.
Insulation resistance (See note 3.)	Between coil and contacts	1,000 M 2 min.
	Between contacts of the same polarity	1,000 M 2 min .
Dielectric strength	Between coil and contacts	2,500 VAC, 1 min
	Between contacts of the same polarity	2,500 VAC, 1 min
Impulse withstand voltage (See note 4.)		4,500 V
Vibration resistance	Destruction	10 to 55 to $10 \mathrm{~Hz}, 0.75-\mathrm{mm}$ single amplitude (Acceleration: 2.94 to $88.9 \mathrm{~m} / \mathrm{s}^{2}$)
	Malfunction	10 to 55 to $10 \mathrm{~Hz}, 0.75-\mathrm{mm}$ single amplitude (Acceleration: 2.94 to $88.9 \mathrm{~m} / \mathrm{s}^{2}$)
Shock resistance	Destruction	490 m/s ${ }^{2}$
	Malfunction	$150 \mathrm{~m} / \mathrm{s}^{2}$
Mechanical endurance (See note 5.)		100,000 operations min.
Electrical endurance (resistive load) (See note 6.)		250 VDC, 25 A, 30,000 ops. min.
Short-time carry current		50 A (5 min), 40 A (15 min)
Maximum interruption current		100 A at 250 VDC (5 times)
Overload interruption		50 A at 250 VDC (50 times min.)
Ambient operating temperature		-40 to $70^{\circ} \mathrm{C}$ (with no icing or condensation)
Ambient operating humidity		5\% to 85\%
Weight		Approx. 100 g

Note: 1. The above values are initial values at an ambient temperature of $23^{\circ} \mathrm{C}$ unless otherwise specified.
2. The contact resistance was measured with 1 A at 5 VDC using the voltage drop method.
3. The insulation resistance was measured with a 500-VDC megohmmeter.
4. The impulse withstand voltage was measured with a JEC-212 (1981) standard impulse voltage waveform ($1.2 \times 50 \mu \mathrm{~s}$).
5. The mechanical endurance was measured at a switching frequency of 3,600 operations $/ \mathrm{hr}$.
6. The electrical endurance was measured at a switching frequency of 60 operations $/ \mathrm{hr}$.

Dimensions

Note: All units are in millimeters unless otherwise indicated.

Screw Terminal Type

G9EB-1-B

Precautions

WARNING

Take measures to prevent contact with charged parts when using the Relay for high voltages.

Correct Use

Refer to the relevant catalog for common precautions.

1. Be sure to tighten all screws to the appropriate torque given below. Loose screws may result in burning due to abnormal heat generation during energization.

- M8 screws: 8.82 to $9.80 \mathrm{~N} \cdot \mathrm{~m}$
- M6 screws: 3.92 to $4.90 \mathrm{~N} \cdot \mathrm{~m}$
- M5 screws: 1.57 to $2.35 \mathrm{~N} \cdot \mathrm{~m}$
- M4 screws: 0.98 to $1.37 \mathrm{~N} \cdot \mathrm{~m}$
- M3.5 screws: 0.75 to $1.18 \mathrm{~N} \cdot \mathrm{~m}$

2. The G9EA and G9EC Relays' contacts have polarity. Be sure to perform connections with the correct polarity. If the contacts are connected with the reverse polarity, the switching characteristics specified in this document cannot be assured.
3. Do not drop or disassemble this Relay. Not only may the Relay fail to meet the performance specifications, it may also result in damage, electric shock, or burning.
4. Do not use these Relays in strong magnetic fields of $800 \mathrm{~A} / \mathrm{m}$ or higher (e.g., near transformers or magnets). The arc discharge that occurs during switching may be bent by the magnetic field, resulting in flashover or insulation faults.
5. This Relay is a device for switching high DC voltages. If it is used for voltages exceeding the specified range, it may not be possible to interrupt the load and burning may result. In order to prevent fire spreading, use a configuration in which the current load can be interrupted in the event of emergencies.
In order to ensure safety of the system, replace the Relay on a regular basis.
6. If the Relay is used for no-load switching, the contact resistance may increase and so confirm correct operation under the actual operating conditions.
7. These Relays contain pressurized gas. Even in applications with low switching frequencies, the ambient temperature and heat caused by arc discharge in the contacts may allow permeation of the sealed gas, resulting in arc interruption failure.
In order to ensure safety of the system, replace Relays on a regular basis.
8. Do not use or store the Relay in a vacuum. Doing so will accelerate deterioration of the sealing.
9. With this Relay, if the rated voltage (or current) is continuously applied to the coil and contacts, and then turned OFF and immediately ON again, the coil temperature, and consequently the coil resistance, will be higher than usual. This means that the mustoperate voltage will also be higher than usual, exceeding the rated value ("hot start"). In this case, take the appropriate countermeasures, such as reducing the load current or restricting the energizing time or ambient operating temperature.
10. The ripple percentage for DC relays can cause fluctuations in the must-operate voltage or humming. For this reason, reduce the ripple percentage in full-wave rectified power supply circuits by adding a smoothing capacitor. Ensure that the ripple percentage is less than 5%.
11.Ensure that a voltage exceeding the specified maximum voltage is not continuously applied to the coil. Abnormal heating in the coil may shorten the lifetime of the insulation coating.
12.Do not use the Relay at a switching voltage or current greater than the specified maximum values. Doing so may result in arc discharge interruption failure or burning due to abnormal heating in the contacts.
11. The contact ratings are for resistive loads. The electrical endurance with inductive loads is inferior to that of resistive loads. Confirm correct operation under the actual operating conditions.
14.Do not use the Relay in locations where water, solvents, chemicals, or oil may come in contact with the case or terminals. Doing so may result in deterioration of the case resin or abnormal heating due to corrosion or contamination of the terminals. Also, if electrolyte adheres to the output terminals, electrolysis may occur between the output terminals, resulting in corrosion of the terminals or wiring disconnections.
12. Be sure to turn OFF the power and confirm that there is no residual voltage before replacing the Relay or performing wiring.
16.The distance between crimp terminals or other conductive parts will be reduced and insulation properties will be lowered if wires are laid in the same direction from the contact terminals. Use insulating coverings, do not wire in the same direction, and take other measures as required to maintain insulation properties.
The coil's power consumption can be reduced by using in combination with a semiconductor circuit. Consult your OMRON representative for details.
Recommended Wire Size

Model	Size
G9EA-1(-B)	14 to $22 \mathrm{~mm}^{2}$
G9EA-1(-B)-CA	22 to $38 \mathrm{~mm}^{2}$
G9EC-1(-B)	38 to $60 \mathrm{~mm}^{2}$
G9EB-1-B	Consult your OMRON representative.

Note: Use flexible leads.

[^0]
Certain Terms and Conditions of Sale

1. Offer; Acceptance. These terms and conditions (these "Terms") are deemed part of all catalogs, manuals or other documents, whether electronic or in writing, relating to the sale of goods or services (collectively, the "Goods") by Omron Electronics LLC and its subsidiary companies ("Seller"). Seller hereby objects to any terms or conditions proposed in Buyer's purchase order or other documents which are inconsistent with, or in addition to, these Terms. Please contact your Omron representative to confirm any additional terms for sales from your Omron company.
2. Prices. All prices stated are current, subject to change without notice by Seller. Buyer agrees to pay the price in effect at time of shipment.
3. Discounts. Cash discounts, if any, will apply only on the net amount of invoices sent to Buyer after deducting transportation charges, taxes and duties, and will be allowed only if (i) the invoice is paid according to Seller's payment terms and (ii) Buyer has no past due amounts owing to Seller.
4. Orders. Seller will accept no order less than $\$ 200$ net billing.
5. Governmental Approvals. Buyer shall be responsible for, and shall bear all costs involved in, obtaining any government approvals required for the importation or sale of the Goods.
6. Taxes. All taxes, duties and other governmental charges (other than general real property and income taxes), including any interest or penalties thereon, imposed directly or indirectly on Seller or required to be collected directly or indirectly by Seller for the manufacture, production, sale, delivery, importation, consumption or use of the Goods sold hereunder (including customs duties and sales, excise, use, turnover and license taxes) shall be charged to and remitted by Buyer to Seller.
7. Financial. If the financial position of Buyer at any time becomes unsatisfactory to Seller, Seller reserves the right to stop shipments or require satisfactory security or payment in advance. If Buyer fails to make payment or otherwise comply with these Terms or any related agreement, Seller may (without liability and in addition to other remedies) cancel any unshipped portion of Goods sold hereunder and stop any Goods in transit until Buyer pays all amounts, including amounts payable hereunder, whether or not then due, which are owing to it by Buyer. Buyer shall in any event remain liable for all unpaid accounts.
8. Cancellation; Etc. Orders are not subject to rescheduling or cancellation unless Buyer indemnifies Seller fully against all costs or expenses arising in connection therewith.
9. Force Majeure. Seller shall not be liable for any delay or failure in delivery resulting from causes beyond its control, including earthquakes, fires, floods, strikes or other labor disputes, shortage of labor or materials, accidents to machinery, acts of sabotage, riots, delay in or lack of transportation or the requirements of any government authority.
10. Shipping: Delivery. Unless otherwise expressly agreed in writing by Seller: a. Shipments shall be by a carrier selected by Seller;
b. Such carrier shall act as the agent of Buyer and delivery to such carrier shall constitute delivery to Buyer;
c. All sales and shipments of Goods shall be FOB shipping point (unless otherwise stated in writing by Seller), at which point title to and all risk of loss of the Goods shall pass from Seller to Buyer, provided that Seller shall retain a security interest in the Goods until the full purchase price is paid by Buyer; d. Delivery and shipping dates are estimates only.
e. Seller will package Goods as it deems proper for protection against normal handling and extra charges apply to special conditions.
11. Claims. Any claim by Buyer against Seller for shortage or damage to the Goods occurring before delivery to the carrier must be presented in writing to Seller within 30 days of receipt of shipment and include the original transportation bill signed by the carrier noting that the carrier received the Goods from Seller in the condition claimed.
12. Warranties. (a) Exclusive Warranty. Seller's exclusive warranty is that the Goods will be free from defects in materials and workmanship for a period of twelve months from the date of sale by Seller (or such other period expressed in writing by Seller). Seller disclaims all other warranties, express or implied. (b) Limitations. SELLER MAKES NO WARRANTY OR REPRESENTATION, EXPRESS OR IMPLIED, ABOUT NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE OF THE GOODS. BUYER ACKNOWLEDGES THAT IT ALONE HAS DETERMINED THAT THE GOODS WILL SUITABLY MEET THE REQUIREMENTS OF THEIR INTENDED USE. Seller further disclaims all warranties and responsibility of any type for claims or expenses based on infringement by the Goods or otherwise of any intellectual property right. (c) Buyer Remedy. Seller's sole obligation hereunder shall be to replace (in the form originally shipped with Buyer responsible for labor charges for removal or replacement thereof) the noncomplying Good or, at Seller's election, to repay or credit Buyer an amount equal to the purchase price of the Good; provided that in no event shall Seller be responsible for warranty, repair, indemnity or any other claims or expenses regarding the Goods unless Seller's analysis confirms that the Goods were properly handled, stored, installed and maintained and not subject to contamination, abuse, misuse or inappropriate modification. Return of any goods by Buyer must be approved in writing by Seller before shipment. Seller shall not be liable for the suitability or unsuitability or the results from the use of Goods in combination with any electrical or electronic components, circuits, system assemblies or any other materials or substances or environments. Any advice, recommendations or information given orally or in writing, are not to be construed as an amendment or addition to the above warranty
13. Damage Limits; Etc. SELLER SHALL NOT BE LIABLE FOR SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES, LOSS OF PROFITS OR PRODUC TION OR COMMERCIAL LOSS IN ANY WAY CONNECTED WITH THE GOODS, WHETHER SUCH CLAIM IS BASED IN CONTRACT, WARRANTY, NEGLIGENCE OR STRICT LIABILITY. Further, in no event shall liability of Seller exceed the individual price of the Good on which liability is asserted.
14. Indemnities. Buyer shall indemnify and hold harmless Seller, its affiliates and its employees from and against all liabilities, losses, claims, costs and expenses (including attorney's fees and expenses) related to any claim, investigation, litigation or proceeding (whether or not Seller is a party) which arises or is alleged to arise from Buyer's acts or omissions under these Terms or in any way with respect to the Goods. Without limiting the foregoing, Buyer (at its own expense) shall indemnify and hold harmless Seller and defend or settle any action brought against Seller to the extent that it is based on a claim tha any Good made to Buyer specifications infringed intellectual property rights of another party.
15. Property: Confidentiality. The intellectual property embodied in the Goods is the exclusive property of Seller and its affiliates and Buyer shall not attempt to duplicate it in any way without the written permission of Seller. Notwithstanding any charges to Buyer for engineering or tooling, all engineering and tooling shall remain the exclusive property of Seller. All information and materials shapplied by Seller to Buyer relating to the Goods are confidential and proprietary, and Buyer shall limit distribution thereof to its trusted employees and strictly prevent disclosure to any third party.
16. Miscellaneous. (a) Waiver. No failure or delay by Seller in exercising any right and no course of dealing between Buyer and Seller shall operate as a waiver of rights by Seller. (b) Assignment. Buyer may not assign its rights hereunder without Seller's written consent. (c) Amendment. These Terms constitute the entire agreement between Buyer and Seller relating to the Goods, and no provision may be changed or waived unless in writing signed by the parties. (d) Severability. If any provision hereof is rendered ineffective or invalid, such provision shall not invalidate any other provision. (e) Setoff. Buyer shall have no right to set off any amounts against the amount owing in respect of this invoice. (f) As used herein, "including" means "including without limitation".

Certain Precautions on Specifications and Use

1. Suitability of Use. Seller shall not be responsible for conformity with any standards, codes or regulations which apply to the combination of the Good in the Buyer's application or use of the Good. At Buyer's request, Seller will provide applicable third party certification documents identifying ratings and limitations of use which apply to the Good. This information by itself is not sufficient for a complete determination of the suitability of the Good in combination with the end product, machine, system, or other application or use. The following are some examples of applications for which particular attention must be given. This is not intended to be an exhaustive list of all possible uses of this Good, nor is it intended to imply that the uses listed may be suitable for this Good:
(i) Outdoor use, uses involving potential chemical contamination or electrical interference, or conditions or uses not described in this document
(ii) Energy control systems, combustion systems, railroad systems, aviation systems, medical equipment, amusement machines, vehicles, safety equipment, and installations subject to separate industry or government regulations.
(iii) Systems, machines and equipment that could present a risk to life or property. Please know and observe all prohibitions of use applicable to this Good.
NEVER USE THE PRODUCT FOR AN APPLICATION INVOLVING SERIOUS RISK TO LIFE OR PROPERTY WITHOUT ENSURING THAT THE SYSTEM AS A WHOLE HAS BEEN DESIGNED TO ADDRESS THE RISKS, AND THAT THE SELLER'S PRODUCT IS PROPERLY RATED AND INSTALLED FOR THE INTENDED USE WITHIN THE OVERALL EQUIPMENT OR SYSTEM. gramming of a programmable Good, or any consequence thereof.
. Performance Data. Performance data given in this catalog is provided as a guide for the user in determining suitability and does not constitute a warranty. It may represent the result of Seller's test conditions, and the user must correlate it to actual application requirements. Actual performance is subject to the Seller's Warranty and Limitations of Liability.
2. Change in Specifications. Product specifications and accessories may be changed at any time based on improvements and other reasons. It is our practice to change part numbers when published ratings or features are changed, or when significant construction changes are made. However, some specifications of the Good may be changed without any notice. When in doubt, special part numbers may be assigned to fix or establish key specifications for your application. Please consult with your Seller's representative at any time to confirm actual specifications of purchased Good.
3. Errors and Omissions. The information in this catalog has been carefully checked and is believed to be accurate; however, no responsibility is assumed for clerical, typographical or proofreading errors, or omissions. at www.omron.com/oei - under the "About Us" tab, in the Legal Matters section.

ALL DIMENSIONS SHOWN ARE IN MILLIMETERS.
To convert millimeters into inches, multiply by 0.03937 . To convert grams into ounces, multiply by 0.03527 .

OMRON ELECTRONICS LLC

One Commerce Drive
Schaumburg, IL 60173
847-843-7900
For US technical support or other inquiries: 800-556-6766

OMRON CANADA, INC.
885 Milner Avenue
Toronto, Ontario M1B 5V8
416-286-6465

OMRON ON-LINE

Global - http://www.omron.com USA - http://www.omron.com/oei Canada - http://www.omron.ca

[^0]: ALL DIMENSIONS SHOWN ARE IN MILLIMETERS.
 To convert millimeters into inches, multiply by 0.03937 . To convert grams into ounces, multiply by 0.03527 .

